Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
J Virol ; 97(3): e0012523, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36786631

RESUMO

Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.


Assuntos
Arenavirus do Novo Mundo , Genoma Viral , Replicação do RNA , Humanos , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/patogenicidade , RNA Viral/genética , Replicação do RNA/genética , Mutagênese , Regiões Promotoras Genéticas/genética
2.
Viruses ; 13(7)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34372519

RESUMO

The New World (NW) mammarenavirus group includes several zoonotic highly pathogenic viruses, such as Junin (JUNV) or Machupo (MACV). Contrary to the Old World mammarenavirus group, these viruses are not able to completely suppress the innate immune response and trigger a robust interferon (IFN)-I response via retinoic acid-inducible gene I (RIG-I). Nevertheless, pathogenic NW mammarenaviruses trigger a weaker IFN response than their nonpathogenic relatives do. RIG-I activation leads to upregulation of a plethora of IFN-stimulated genes (ISGs), which exert a characteristic antiviral effect either as lone effectors, or resulting from the combination with other ISGs or cellular factors. The dsRNA sensor protein kinase receptor (PKR) is an ISG that plays a pivotal role in the control of the mammarenavirus infection. In addition to its well-known protein synthesis inhibition, PKR further modulates the overall IFN-I response against different viruses, including mammarenaviruses. For this study, we employed Tacaribe virus (TCRV), the closest relative of the human pathogenic JUNV. Our findings indicate that PKR does not only increase IFN-I expression against TCRV infection, but also affects the kinetic expression and the extent of induction of Mx1 and ISG15 at both levels, mRNA and protein expression. Moreover, TCRV fails to suppress the effect of activated PKR, resulting in the inhibition of a viral titer. Here, we provide original evidence of the specific immunomodulatory role of PKR over selected ISGs, altering the dynamic of the innate immune response course against TCRV. The mechanisms for innate immune evasion are key for the emergence and adaptation of human pathogenic arenaviruses, and highly pathogenic mammarenaviruses, such as JUNV or MACV, trigger a weaker IFN response than nonpathogenic mammarenaviruses. Within the innate immune response context, PKR plays an important role in sensing and restricting the infection of TCRV virus. Although the mechanism of PKR for protein synthesis inhibition is well described, its immunomodulatory role is less understood. Our present findings further characterize the innate immune response in the absence of PKR, unveiling the role of PKR in defining the ISG profile after viral infection. Moreover, TCRV fails to suppress activated PKR, resulting in viral progeny production inhibition.


Assuntos
Arenavirus do Novo Mundo/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , eIF-2 Quinase/genética , Células A549 , Arenavirus do Novo Mundo/patogenicidade , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Citocinas/genética , Citocinas/imunologia , Humanos , Evasão da Resposta Imune , Ubiquitinas/genética , Ubiquitinas/imunologia , Replicação Viral , eIF-2 Quinase/imunologia
4.
PLoS Pathog ; 17(3): e1009356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33647064

RESUMO

Several arenaviruses cause hemorrhagic fevers in humans with high case fatality rates. A vaccine named Candid#1 is available only against Junin virus (JUNV) in Argentina. Specific N-linked glycans on the arenavirus surface glycoprotein (GP) mask important epitopes and help the virus evade antibody responses. However the role of GPC glycans in arenavirus pathogenicity is largely unclear. In a lethal animal model of hemorrhagic fever-causing Machupo virus (MACV) infection, we found that a chimeric MACV with the ectodomain of GPC from Candid#1 vaccine was partially attenuated. Interestingly, mutations resulting in acquisition of N-linked glycans at GPC N83 and N166 frequently occurred in late stages of the infection. These glycosylation sites are conserved in the GPC of wild-type MACV, indicating that this is a phenotypic reversion for the chimeric MACV to gain those glycans crucial for infection in vivo. Further studies indicated that the GPC mutant viruses with additional glycans became more resistant to neutralizing antibodies and more virulent in animals. On the other hand, disruption of these glycosylation sites on wild-type MACV GPC rendered the virus substantially attenuated in vivo and also more susceptible to antibody neutralization, while loss of these glycans did not affect virus growth in cultured cells. We also found that MACV lacking specific GPC glycans elicited higher levels of neutralizing antibodies against wild-type MACV. Our findings revealed the critical role of specific glycans on GPC in arenavirus pathogenicity and have important implications for rational design of vaccines against this group of hemorrhagic fever-causing viruses.


Assuntos
Anticorpos Antivirais/imunologia , Arenavirus/imunologia , Febre Hemorrágica Americana/virologia , Vírus Junin/patogenicidade , Animais , Anticorpos Neutralizantes/imunologia , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/prevenção & controle , Humanos , Vírus Junin/imunologia , Vacinas Virais/imunologia
5.
PLoS Biol ; 17(2): e3000137, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30726215

RESUMO

Tripartite motif (TRIM) proteins belong to a large family with many roles in host biology, including restricting virus infection. Here, we found that TRIM2, which has been implicated in cases of Charcot-Marie-Tooth disease (CMTD) in humans, acts by blocking hemorrhagic fever New World arenavirus (NWA) entry into cells. We show that Trim2-knockout mice, as well as primary fibroblasts from a CMTD patient with mutations in TRIM2, are more highly infected by the NWAs Junín and Tacaribe virus than wild-type mice or cells are. Using mice with different Trim2 gene deletions and TRIM2 mutant constructs, we demonstrate that its antiviral activity is uniquely independent of the RING domain encoding ubiquitin ligase activity. Finally, we show that one member of the TRIM2 interactome, signal regulatory protein α (SIRPA), a known inhibitor of phagocytosis, also restricts NWA infection and conversely that TRIM2 limits phagocytosis of apoptotic cells. In addition to demonstrating a novel antiviral mechanism for TRIM proteins, these studies suggest that the NWA entry and phagocytosis pathways overlap.


Assuntos
Antígenos de Diferenciação/genética , Arenavirus do Novo Mundo/genética , Doença de Charcot-Marie-Tooth/genética , Interações Hospedeiro-Patógeno/genética , Proteínas Nucleares/genética , Receptores Imunológicos/genética , Animais , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Apoptose , Arenavirus do Novo Mundo/crescimento & desenvolvimento , Arenavirus do Novo Mundo/patogenicidade , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/virologia , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Chlorocebus aethiops , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/virologia , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas de Neurofilamentos/genética , Proteínas de Neurofilamentos/imunologia , Proteínas de Neurofilamentos/metabolismo , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoblastos/virologia , Cultura Primária de Células , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais , Células Vero , Internalização do Vírus
6.
Viruses ; 10(5)2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724035

RESUMO

New World arenaviruses cause fatal hemorrhagic disease in South America. Pirital virus (PIRV), a mammarenavirus hosted by Alston’s cotton rat (Sigmodon alstoni), causes a disease in Syrian golden hamsters (Mesocricetus auratus) (biosafety level-3, BSL-3) that has many pathologic similarities to the South American hemorrhagic fevers (BSL-4) and, thus, is considered among the best small-animal models for human arenavirus disease. Here, we extend in greater detail previously described clinical and pathological findings in Syrian hamsters and provide evidence for a pro-inflammatory macrophage response during PIRV infection. The liver was the principal target organ of the disease, and signs of Kupffer cell involvement were identified in mortally infected hamster histopathology data. Differential expression analysis of liver mRNA revealed signatures of the pro-inflammatory response, hematologic dysregulation, interferon pathway and other host response pathways, including 17 key transcripts that were also reported in two non-human primate (NHP) arenavirus liver-infection models, representing both Old and New World mammarenavirus infections. Although antigen presentation may differ among rodent and NHP species, key hemostatic and innate immune-response components showed expression parallels. Signatures of pro-inflammatory macrophage involvement in PIRV-infected livers included enrichment of Ifng, Nfkb2, Stat1, Irf1, Klf6, Il1b, Cxcl10, and Cxcl11 transcripts. Together, these data indicate that pro-inflammatory macrophage M1 responses likely contribute to the pathogenesis of acute PIRV infection.


Assuntos
Infecções por Arenaviridae/imunologia , Arenavirus do Novo Mundo/patogenicidade , Fígado/imunologia , Macrófagos/imunologia , Animais , Cricetinae , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Imunidade Inata , Células de Kupffer/virologia , Fígado/patologia , Fígado/virologia
7.
Methods Mol Biol ; 1604: 113-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28986829

RESUMO

Identification of cell moieties involved in viral binding and internalization is essential since their expression would render a cell susceptible. Further steps that allow the uncoating of the viral particle at the right subcellular localization have been intensively studied. These "entry" steps could determine cell permissiveness and often define tissue and host tropism. Therefore applying the right and, when possible, straightforward experimental approaches would shorten avenues to the complete knowledge of this first and key step of any viral life cycle. Mammarenaviruses are enveloped viruses that enter the host cell via receptor-mediated endocytosis. In this chapter we present a set of customized experimental approaches and tools that were used to describe the entry of Junín virus (JUNV), and other New World mammarenavirus members, into mammalian cells.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Animais , Arenaviridae/patogenicidade , Endocitose/fisiologia , Humanos
8.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28794024

RESUMO

The arenavirus family consists of several highly pathogenic viruses, including the Old World (OW) arenavirus Lassa fever virus (LASV) and the New World (NW) Junin virus (JUNV) and Machupo virus (MACV). Host response to infection by these pathogenic arenaviruses is distinct in many aspects. JUNV and MACV infections readily induce an interferon (IFN) response in human cells, while LASV infection usually triggers an undetectable or weak IFN response. JUNV induces an IFN response through RIG-I, suggesting that the host non-self RNA sensor readily detects JUNV viral RNAs (vRNAs) during infection and activates IFN response. Double-stranded-RNA (dsRNA)-activated protein kinase R (PKR) is another host non-self RNA sensor classically known for its vRNA recognition activity. Here we report that infection with NW arenaviruses JUNV and MACV, but not OW LASV, activated PKR, concomitant with elevated phosphorylation of the translation initiation factor α subunit of eukaryotic initiation factor 2 (eIF2α). Host protein synthesis was substantially suppressed in MACV- and JUNV-infected cells but was only marginally reduced in LASV-infected cells. Despite the antiviral activity known for PKR against many other viruses, the replication of JUNV and MACV was not impaired but was slightly augmented in wild-type (wt) cells compared to that in PKR-deficient cells, suggesting that PKR or PKR activation did not negatively affect JUNV and MACV infection. Additionally, we found an enhanced IFN response in JUNV- or MACV-infected PKR-deficient cells, which was inversely correlated with virus replication.IMPORTANCE The detection of viral RNA by host non-self RNA sensors, including RIG-I and MDA5, is critical to the initiation of the innate immune response to RNA virus infection. Among pathogenic arenaviruses, the OW LASV usually does not elicit an interferon response. However, the NW arenaviruses JUNV and MACV readily trigger an IFN response in a RIG-I-dependent manner. Here, we demonstrate for the first time that pathogenic NW arenaviruses JUNV and MACV, but not the OW arenavirus LASV, activated the dsRNA-dependent PKR, another host non-self RNA sensor, during infection. Interestingly, the replication of JUNV and MACV was not restricted but was rather slightly augmented in the presence of PKR. Our data provide new evidence for a distinct interplay between host non-self RNA sensors and pathogenic arenaviruses, which also provides insights into the pathogenesis of arenaviruses and may facilitate the design of vaccines and treatments against arenavirus-caused diseases.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Arenavirus do Velho Mundo/patogenicidade , Imunidade Inata , Vírus Junin/patogenicidade , Receptores de Reconhecimento de Padrão/metabolismo , Replicação Viral , eIF-2 Quinase/metabolismo , Células A549 , Arenavirus do Novo Mundo/fisiologia , Arenavirus do Velho Mundo/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Interferons/biossíntese , Interferons/imunologia , Vírus Junin/fisiologia , Fosforilação , Receptores de Reconhecimento de Padrão/genética , Fatores de Transcrição/metabolismo , eIF-2 Quinase/genética
9.
Sci Rep ; 7(1): 4679, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680057

RESUMO

Machupo virus (MACV) is a New World (NW) arenavirus and causative agent of Bolivian hemorrhagic fever (HF). Here, we identified a variant of MACV strain Carvallo termed Car91 that was attenuated in guinea pigs. Infection of guinea pigs with an earlier passage of Carvallo, termed Car68, resulted in a lethal disease with a 63% mortality rate. Sequencing analysis revealed that compared to Car68, Car91 had a 35 nucleotide (nt) deletion and a point mutation within the L-segment intergenic region (IGR), and three silent changes in the polymerase gene that did not impact amino acid coding. No changes were found on the S-segment. Because it was apathogenic, we determined if Car91 could protect guinea pigs against Guanarito virus (GTOV), a distantly related NW arenavirus. While naïve animals succumbed to GTOV infection, 88% of the Car91-exposed guinea pigs were protected. These findings indicate that attenuated MACV vaccines can provide heterologous protection against NW arenaviruses. The disruption in the L-segment IGR, including a single point mutant and 35 nt partial deletion, were the only major variance detected between virulent and avirulent isolates, implicating its role in attenuation. Overall, our data support the development of live-attenuated arenaviruses as broadly protective pan-arenavirus vaccines.


Assuntos
Infecções por Arenaviridae/prevenção & controle , Arenavirus do Novo Mundo/patogenicidade , DNA Intergênico , Análise de Sequência de RNA/métodos , Vacinas Atenuadas/genética , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/isolamento & purificação , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Cobaias , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação Puntual , RNA Viral/genética , Deleção de Sequência , Vacinas Atenuadas/isolamento & purificação , Células Vero , Fatores de Virulência/genética
10.
Annu Rev Virol ; 4(1): 141-158, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28645238

RESUMO

Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.


Assuntos
Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/patogenicidade , Animais , Antígenos CD/metabolismo , Infecções por Arenaviridae/complicações , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/transmissão , Arenavirus do Novo Mundo/imunologia , Modelos Animais de Doenças , Febres Hemorrágicas Virais/transmissão , Febres Hemorrágicas Virais/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Receptores da Transferrina/metabolismo , Receptores Virais/metabolismo , Roedores/virologia , Zoonoses/virologia
11.
J Virol ; 90(3): 1290-7, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581982

RESUMO

UNLABELLED: Machupo virus (MACV) is the causative agent of Bolivian hemorrhagic fever. Our previous study demonstrated that a MACV strain with a single amino acid substitution (F438I) in the transmembrane domain of glycoprotein is attenuated but genetically unstable in mice. MACV is closely related to Junin virus (JUNV), the causative agent of Argentine hemorrhagic fever. Others and our group have identified the glycoprotein to be the major viral factor determining JUNV attenuation. In this study, we tested the compatibility of the glycoprotein of the Candid#1 live-attenuated vaccine strain of JUNV in MACV replication and its ability to attenuate MACV in vivo. Recombinant MACV with the Candid#1 glycoprotein (rMACV/Cd#1-GPC) exhibited growth properties similar to those of Candid#1 and was genetically stable in vitro. In a mouse model of lethal infection, rMACV/Cd#1-GPC was fully attenuated, more immunogenic than Candid#1, and fully protective against MACV infection. Therefore, the MACV strain expressing the glycoprotein of Candid#1 is safe, genetically stable, and highly protective against MACV infection in a mouse model. IMPORTANCE: Currently, there are no FDA-approved vaccines and/or treatments for Bolivian hemorrhagic fever, which is a fatal human disease caused by MACV. The development of antiviral strategies to combat viral hemorrhagic fevers, including Bolivian hemorrhagic fever, is one of the top priorities of the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Here, we demonstrate for the first time that MACV expressing glycoprotein of Candid#1 is a safe, genetically stable, highly immunogenic, and protective vaccine candidate against Bolivian hemorrhagic fever.


Assuntos
Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/imunologia , Glicoproteínas de Membrana/genética , Recombinação Genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Estruturas Animais/patologia , Animais , Arenavirus do Novo Mundo/patogenicidade , Peso Corporal , Modelos Animais de Doenças , Instabilidade Genômica , Febre Hemorrágica Americana/patologia , Febre Hemorrágica Americana/prevenção & controle , Histocitoquímica , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Sobrevida , Temperatura , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Virulência
12.
Vet Pathol ; 53(1): 190-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26139838

RESUMO

Machupo virus, the cause of Bolivian hemorrhagic fever, is a highly lethal viral hemorrhagic fever with no Food and Drug Administration-approved vaccines or therapeutics. This study evaluated the guinea pig as a model using the Machupo virus-Chicava strain administered via aerosol challenge. Guinea pigs (Cavia porcellus) were serially sampled to evaluate the temporal progression of infection, gross and histologic lesions, and sequential changes in serum chemistry and hematology. The incubation period was 5 to 12 days, and complete blood counts revealed leukopenia with lymphopenia and thrombocytopenia. Gross pathologic findings included congestion and hemorrhage of the gastrointestinal mucosa and serosa, noncollapsing lungs with fluid exudation, enlarged lymph nodes, and progressive pallor and friability of the liver. Histologic lesions consisted of foci of degeneration and cell death in the haired skin, liver, pancreas, adrenal glands, lymph nodes, tongue, esophagus, salivary glands, renal pelvis, small intestine, and large intestine. Lymphohistiocytic interstitial pneumonia was also present. Inflammation within the central nervous system, interpreted as nonsuppurative encephalitis, was histologically apparent approximately 16 days postexposure and was generally progressive. Macrophages in the tracheobronchial lymph node, on day 5 postexposure, were the first cells to demonstrate visible viral antigen. Viral antigen was detected throughout the lymphoid system by day 9 postexposure, followed by prominent spread within epithelial tissues and then brain. This study provides insight into the course of Machupo virus infection and supports the utility of guinea pigs as an additional animal model for vaccine and therapeutic development.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Modelos Animais de Doenças , Cobaias , Febre Hemorrágica Americana/patologia , Glândulas Suprarrenais/patologia , Aerossóis , Animais , Epitélio/patologia , Feminino , Febre Hemorrágica Americana/virologia , Humanos , Fígado/patologia , Pulmão/patologia , Linfonodos/patologia , Masculino , Pâncreas/patologia
13.
Artigo em Russo | MEDLINE | ID: mdl-25286529

RESUMO

AIM: Study sensitivity of laboratory animals to a causative agent ofArgentine hemorrhagic fever. MATERIALS AND METHODS: Junin virus strain XJ P37 was obtained from the State Collection of Causative Agents of Viral Hemorrhagic Fevers of the Pathogenicity Group I of Scientific Research Center of the 33rd Central Scientific Research Test Institute (SRC of the 33rd CSRTI). Junin virus strain XJ P37 culture with biological activity of 5.2 1g PFU x ml was used in the experiments. Mice (2 - 4 and 7 - 14 days old), guinea pigs (250 - 300 g), 1.8 - 2.5 kg shinshilla breed rabbits, 2.0 - 3.0 kg javanese macaque monkeys were obtained from vivarium of the SRC of the 33rd CSRTI. Vero (B) and GMK-AH-1 (D) cell cultures were obtained from cell culture collection of the SRC of the 33rd CSRTI. Biological activity calculation of Junin virus was carried out by Kerber in I.P. Amsharin modification. RESULTS: Lethality in animals was from 12.5 to 50% after intranasal and intraperitoneal infection of guinea pigs, intramuscular, intraperitoneal and subcutaneous infection of rabbits, intracerebral and intranasal infection of mice at the doses from 0.4 to 1.0 x 10(5) PFU. Death of infected monkeys after intramuscular administration of the virus at 1.0 x 10(4) PFU dose was not observed. In 100% of surviving animals formation of virus-neutralizing antibodies was registered. CONCLUSION: Evaluation of sensitivity of laboratory animals to Junin virus has shown that intracerebrally infected mice may be used to maintain causative agent culture, infected guinea pigs - to prepare virus-containing cultures and modelling infection exacerbation in humans. Intramuscularly infected rabbits may be used to obtain hyper-immune sera.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Febre Hemorrágica Americana/virologia , Vírus Junin/patogenicidade , Animais , Anticorpos Antivirais/isolamento & purificação , Modelos Animais de Doenças , Cobaias , Febre Hemorrágica Americana/epidemiologia , Febre Hemorrágica Americana/patologia , Humanos , Camundongos , Coelhos
14.
J Virol ; 88(18): 10995-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25031335

RESUMO

Machupo virus (MACV) is the etiologic agent of Bolivian hemorrhagic fever (BHF). Utilizing a reverse-genetics system recently developed, we report the rescue of a rationally modified recombinant MACV containing a single mutation in the transmembrane region of the glycoprotein. Following challenge of susceptible mice, we identified a significant reduction in virulence in the novel virus. We also identified an instability leading to reversion of the single mutation to a wild-type genotype.


Assuntos
Substituição de Aminoácidos , Arenavirus do Novo Mundo/metabolismo , Arenavirus do Novo Mundo/patogenicidade , Membrana Celular/virologia , Glicoproteínas/genética , Febre Hemorrágica Americana/virologia , Mutação de Sentido Incorreto , Proteínas Virais/química , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Arenavirus do Novo Mundo/química , Arenavirus do Novo Mundo/genética , Sequência de Bases , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo , Virulência
15.
Curr Opin Virol ; 5: 82-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24636947

RESUMO

The etiologic agent of Bolivian hemorrhagic fever (BHF), Machupo virus (MACV) is reported to have a mortality rate of 25-35%. First identified in 1959, BHF was the cause of a localized outbreak in San Joaquin until rodent population controls were implemented in 1964. The rodent Calomys collosus was identified as the primary vector and reservoir for the virus. Multiple animal models were considered during the 1970s with the most human-like disease identified in Rhesus macaques but minimal characterization of the pathogenesis has been published since. A reemergence of reported BHF cases has been reported in recent years, which necessitates the further study and development of a vaccine to prevent future outbreaks.


Assuntos
Arenavirus do Novo Mundo/patogenicidade , Febre Hemorrágica Americana/virologia , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/fisiologia , Modelos Animais de Doenças , Febre Hemorrágica Americana/epidemiologia , Humanos , Macaca mulatta , Virulência
16.
J Gen Virol ; 95(Pt 1): 1-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24068704

RESUMO

Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.


Assuntos
Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/virologia , Arenavirus do Novo Mundo/genética , Arenavirus do Velho Mundo/genética , Febres Hemorrágicas Virais/patologia , Febres Hemorrágicas Virais/virologia , Animais , Infecções por Arenaviridae/imunologia , Arenavirus do Novo Mundo/classificação , Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Arenavirus do Velho Mundo/classificação , Arenavirus do Velho Mundo/imunologia , Arenavirus do Velho Mundo/patogenicidade , Febres Hemorrágicas Virais/imunologia , Humanos
17.
Artigo em Russo | MEDLINE | ID: mdl-24000605

RESUMO

Analysis of data of the available literature on epidemiology of Bolivian hemorrhagic fever, manifestations of human disease, biological properties of the causative agent and development carried out abroad of means and methods of diagnostics, prophylaxis and therapy of this infection that presents a potential threat for the population and economy of the Russian Federation in case of introduction of the causative agent is presented.


Assuntos
Arenavirus do Novo Mundo/fisiologia , Febre Hemorrágica Americana/epidemiologia , Febre Hemorrágica Americana/fisiopatologia , Muridae/virologia , Vírion/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Antivirais/uso terapêutico , Arenavirus do Novo Mundo/patogenicidade , Gerenciamento Clínico , Surtos de Doenças , Vetores de Doenças , Febre Hemorrágica Americana/terapia , Febre Hemorrágica Americana/virologia , Humanos , Federação Russa/epidemiologia , América do Sul/epidemiologia , Vírion/patogenicidade , Replicação Viral
18.
Virol J ; 10: 221, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23816343

RESUMO

BACKGROUND: Tacaribe virus (TCRV) is a less biohazardous relative of the highly pathogenic clade B New World arenaviruses that cause viral hemorrhagic fever syndromes and require handling in maximum containment facilities not readily available to most researchers. AG129 type I and II interferon receptor knockout mice have been shown to be susceptible to TCRV infection, but the pathogenic mechanisms contributing to the lethal disease are unclear. METHODS: To gain insights into the pathogenesis of TCRV infection in AG129 mice, we assessed hematologic and cytokine responses during the course of infection, as well as changes in the permeability of the vascular endothelium. We also treated TCRV-challenged mice with MY-24, a compound that prevents mortality without affecting viral loads during the acute infection, and measured serum and tissue viral titers out to 40 days post-infection to determine whether the virus is ultimately cleared in recovering mice. RESULTS: We found that the development of viremia and splenomegaly precedes an elevation in white blood cells and the detection of high levels of proinflammatory mediators known to destabilize the endothelial barrier, which likely contributes to the increased vascular permeability and weight loss that was observed several days prior to when the mice generally succumb to TCRV challenge. In surviving mice treated with MY-24, viremia and liver virus titers were not cleared until 2-3 weeks post-infection, after which the mice began to recover lost weight. Remarkably, substantial viral loads were still present in the lung, spleen, brain and kidney tissues at the conclusion of the study. CONCLUSIONS: Our findings suggest that vascular leak may be a contributing factor in the demise of TCRV-infected mice, as histopathologic findings are generally mild to moderate in nature, and as evidenced with MY-24 treatment, animals can survive in the face of high viral loads.


Assuntos
Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Permeabilidade Capilar , Citocinas/metabolismo , Estruturas Animais/virologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Carga Viral , Viremia/imunologia , Viremia/patologia
19.
PLoS Biol ; 11(5): e1001571, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23723737

RESUMO

Transferrin Receptor (TfR1) is the cell-surface receptor that regulates iron uptake into cells, a process that is fundamental to life. However, TfR1 also facilitates the cellular entry of multiple mammalian viruses. We use evolutionary and functional analyses of TfR1 in the rodent clade, where two families of viruses bind this receptor, to mechanistically dissect how essential housekeeping genes like TFR1 successfully balance the opposing selective pressures exerted by host and virus. We find that while the sequence of rodent TfR1 is generally conserved, a small set of TfR1 residue positions has evolved rapidly over the speciation of rodents. Remarkably, all of these residues correspond to the two virus binding surfaces of TfR1. We show that naturally occurring mutations at these positions block virus entry while simultaneously preserving iron-uptake functionalities, both in rodent and human TfR1. Thus, by constantly replacing the amino acids encoded at just a few residue positions, TFR1 divorces adaptation to ever-changing viruses from preservation of key cellular functions. These dynamics have driven genetic divergence at the TFR1 locus that now enforces species-specific barriers to virus transmission, limiting both the cross-species and zoonotic transmission of these viruses.


Assuntos
Genes Essenciais , Receptores da Transferrina/metabolismo , Sequência de Aminoácidos , Animais , Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/patogenicidade , Linhagem Celular , Cães , Humanos , Ferro/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Polimorfismo de Nucleotídeo Único , Receptores da Transferrina/genética , Receptores Virais/química , Receptores Virais/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Internalização do Vírus , Zoonoses
20.
PLoS Biol ; 11(5): e1001574, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23723739

RESUMO

All viruses need to bind to specific receptor molecules on the surface of target cells to initiate infection. Virus-receptor binding is highly specific, and this specificity determines both the species and the cell type that can be infected by a given virus. In some well-studied cases, the virus-binding region on the receptor has been found to be unrelated to the receptor's normal cellular function. Resistance to virus infection can thus evolve by selection of mutations that alter amino acids in the binding region with minimal effect on normal function. This sort of positive selection can be used to infer the history of the host-virus "arms race" during their coevolution. In a new study, Demogines et al. use a combination of phylogenetic, structural, and virological analysis to infer the history and significance of positive selection on the transferrin receptor TfR1, a housekeeping protein required for iron uptake and the cell surface receptor for at least three different types of virus. The authors show that only two parts of the rodent TfR1 molecule have been subject to positive selection and that these correspond to the binding sites for two of these viruses-the mouse mammary tumor virus (a retrovirus) and Machupo virus (an arenavirus). They confirmed this result by introducing the inferred binding site mutations into the wild-type protein and testing for receptor function. Related arenaviruses are beginning to spread in human populations in South America as the cause of often fatal hemorrhagic fevers, and, although Demogines et al. could find no evidence of TfR1 mutations in this region that might have been selected as a consequence of human infection, the authors identified one such mutation in Asian populations that affects infection with these viruses.


Assuntos
Interações Hospedeiro-Patógeno , Receptores Virais/metabolismo , Vírion/patogenicidade , Animais , Arenavirus do Novo Mundo/metabolismo , Arenavirus do Novo Mundo/patogenicidade , Sítios de Ligação , Humanos , Vírus do Tumor Mamário do Camundongo/genética , Vírus do Tumor Mamário do Camundongo/metabolismo , Camundongos , Filogenia , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Receptores Virais/genética , Vírion/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...